Application of Chaos and Neural Network in Power Load Forecasting

نویسندگان

  • Li Li
  • Liu Chong-xin
  • Recai Kilic
چکیده

This paper employs chaos theory into power load forecasting. Lyapunov exponents on chaos theory are calculated to judge whether it is a chaotic system. Delay time and embedding dimension are calculated to reconstruct the phase space and determine the structure of artificial neural network ANN . Improved back propagation BP algorithm based on genetic algorithm GA is used to train and forecast. Finally, this paper uses the load data of Shaanxi province power grid of China to complete the short-term load forecasting. The results show that the model in this paper is more effective than classical standard BP neural network model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

پیش‌‌بینی کوتاه مدت قیمت تراکم گرهی در یک سیستم قدرت بزرگ تجدید ساختار یافته با استفاده از شبکه‌های عصبی مصنوعی با بهینه‌سازی آموزش ژنتیکی

In a daily power market, price and load forecasting is the most important signal for the market participants. In this paper, an accurate feed-forward neural network model with a genetic optimization levenberg-marquardt back propagation (LMBP) training algorithm is employed for short-term nodal congestion price forecasting in different zones of a large-scale power market. The use of genetic algo...

متن کامل

Analysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory

Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014